EDITORIAL

A fresh look at nuclear energy

e are running out of time, as the Intergovernmental Panel on Climate Change (IPCC) warned last October in a special report, *Global Warming of 1.5°C*. National commitments under the 2015 Paris Agreement are only the first step toward decarbonization, but most countries are already lagging behind. It is time to take a fresh look at the role that nuclear energy can play in decarbonizing the world's energy system.

Nuclear is already the largest source of low-carbon energy in the United States and Europe and the secondlargest source worldwide (after hydropower). In the September report of the MIT Energy Initiative, *The Future*

of Nuclear Energy in a Carbon-Constrained World, we show that extending the life of the existing fleet of nuclear reactors worldwide is the least costly approach to avoiding an increase of carbon emissions in the power sector. Yet, some countries have prioritized closing nuclear plants, and other countries have policies that undermine the financial viability of their plants. Fortunately, there are signs that this situation is changing. In the United States, Illinois, New Jersey, and New York have taken steps to preserve their nuclear plants as part of a larger decarbonization

Nuclear power generation is increasing in China through the deployment of new power plants such as the one in Haiyang, China.

strategy. In Taiwan, voters rejected a plan to end the use of nuclear energy. In France, decisions on nuclear plant closures must account for the impact on decarbonization commitments. In the United Kingdom, the government's decarbonization policy entails replacing old nuclear plants with new ones. Strong actions are needed also in Belgium, Japan, South Korea, Spain, and Switzerland, where the existing nuclear fleet is seriously at risk of being phased out.

What about the existing electricity sector in developed countries—can it become fully decarbonized? In the United States, China, and Europe, the most effective and least costly path is a combination of variable renewable energy technologies—those that fluctuate with time of day or season (such as solar or wind energy), and lowcarbon dispatchable sources (whose power output to the The implication is that a large impact on the cost of new nuclear plants may come from several sources: improvements in project management practices; innovations in the serial construction of standardized designs to minimize reengineering and maximize learning; adoption of modular construction, to shift labor from construction sites to productive factories and shipyards; advanced concrete solutions to reduce the need for reinforcement steel formwork at the site; and seismic isolation to protect the plant against earthquakes, which simplifies the structural design of the plant.

grid can be controlled on demand). Some options, such

as hydropower and geothermal energy, are geographi-

cally limited. Other options, such as battery storage, are

not affordable at the scale needed to balance variable en-

ergy demand through long periods of low wind and sun

or through seasonal fluctuations, although that could

change in the coming decades. Nuclear energy is one low-

carbon dispatchable option that is virtually unlimited and

available now. Excluding nuclear power could double or

triple the average cost of electricity for deep decarbon-

ization scenarios because of the enormous overcapacity

of solar energy, wind energy, and batteries that would be

required to meet demand in the absence of a dispatchable

low-carbon energy source.

cost of new nuclear plants

has escalated, especially

in the first-of-a-kind units

currently being deployed

in the United States and

Western Europe. This may

limit the role of nuclear

power in a low-carbon

portfolio and raise the cost

of deep decarbonization.

The good news is that the

cost of new nuclear plants

can be reduced, not only

in the direct cost of the

equipment, but also in

the associated civil struc-

tures and in the processes

of engineering, licensing,

and assembling the plant.

One obstacle is that the

It's time to transform our thinking. Renewable and nuclear energies are not mutually exclusive, but complementary. We should preserve existing nuclear power plants and reimagine how new plants can be delivered.

> -John Parsons, Jacopo Buongiorno, Michael Corradini, David Petti

John Parsons

is a senior lecturer at the Sloan School of Management, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. jparsons@ mit.edu

Jacopo Buongiorno

is the TEPCO Professor and associate department head of Nuclear Science and Engineering at MIT, Cambridge, MA, USA. jacopo@ mit.edu Downloaded from http://science.sciencemag.org/ on February 25, 2019

Michael Corradini

is a professor emeritus in Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, WI, USA. corradini@ engr.wisc.edu

David Petti

is the director of the Nuclear Fuels and Materials Division at the Idaho National Laboratory, Idaho Falls, ID. USA. david. petti@inl.gov

A fresh look at nuclear energy

John Parsons, Jacopo Buongiorno, Michael Corradini and David Petti

Science **363** (6423), 105. DOI: 10.1126/science.aaw5304

ARTICLE TOOLS

http://science.sciencemag.org/content/363/6423/105

PERMISSIONS

http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title *Science* is a registered trademark of AAAS.